Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Blockchain is a decentralized, digital, and distributed ledger which allows transparent and secure information sharing among the peer-to-peer network. It eliminates the need for a centralized trusted party and, though it was introduced as the backbone technology for cryptocurrencies but has proved to be a promising and revolutionary technology for almost all global industries. The application of blockchain technology in the energy sector proposes a paradigm of solutions to problems of different levels of complexity in the traditional energy ecosystem. Extensive research has been proposed to exploit the inherent benefits of blockchain technology for the integration of distributed energy sources and facilitate peer-to-peer energy trading. This paper proposes a blockchain-based architecture to facilitate secure and decentralized energy trading generated from renewable energy sources. The solution utilizes the Ethereum blockchain and Smart Contracts for energy trading among the members of a small community without any trusted third entity and adopts features to achieve data integrity and confidentiality, and user identity privacy.more » « less
-
Patient health records(PHRs) are crucial and sensitive as they contain essential information and are frequently shared among healthcare entities. This information must remain correct, up to date, private and accessible only to the authorized entities. Moreover, access must also be assured during health emergency crises such as the recent outbreak, which represents the greatest test of the flexibility and the efficiency of PHR sharing among healthcare providers, which ended up an immense interruption to the healthcare industry. Moreover, the right to privacy is the most fundamental right for a patient. Hence, the patient health records in the healthcare sector have faced issues with privacy breaches, insider outside attacks, and unauthorized access to crucial patients’ records. As a result, it pushes more patients to demand more control, security, and a smoother experience when they want to access their health records. Furthermore, the lack of interoperability among the healthcare system and providers and the added weight of cyber-attacks on an already overwhelmed system have called for an immediate solution. In this work, we developed a secured blockchain framework that safeguards patients’ full control over their health data which can be stored in their private IPFS and later shared with an authorized provider. Furthermore, the system ensures privacy and security while handling patient data, which can only be shared with the patients. The proposed Security and privacy analysis show promising results in providing time savings, enhanced confidentiality, and less disruption in patient-provider interactions.more » « less
-
Covid-19 outbreak represents an exceptional test of the flexibility and the efficiency of patient medical records transfer among healthcare providers which ended up in boundless interruption to the healthcare industry. This public crisis has pushed for an urgent innovation of the patient medical records transference (PMRT) system to meet the needs and provide appropriate patient care. Moreover, the drawback effects of Covid-19 changed the healthcare system forever, more patients are requesting more control, secure, and smoother experience when they want access to their health records. However, the problems stem from the lack of interoperability among the healthcare system and providers and the added burden of cyber-attacks on an already stressed system call for an immediate solution. In this work, we present a secured blockchain framework that ensures patients full ownership over their medical data which can be stored in their private IPFS and later can be shared with an authorized provider. The analysis of the proposed security and privacy aspects shows promising results in providing time savings and resulted in enhanced confidentiality and less disruption in patient-provider interactions.more » « less
-
The emergence of the novel SARS-CoV-2 (Covid-19) virus in 2019 has led to continuous monitoring of the outbreak attempting to generate accurate reports of people's health information to understand the pandemic's impact. It is likely that more variants will emerge since not all countries and populations have been vaccinated. Thus, with SARS-CoV-2's constant mutation, researchers need to collect individuals' health data to study these variants and vaccine efficacy, especially those who show symptoms. However, researchers have difficulties building comprehensive datasets because people are unwilling to release their health information or have no way to report their health statuses (i.e., at-home testing). This problem stems from a lack of complete control over who assesses their health data. Hence, they cannot guarantee the security, privacy, and integrity of the disclosed health information. As the problem of building secure databases persists, researchers find it challenging to accurately report any evolving variants within a short period. In this work, we propose a blockchain architecture that can guarantee patients' health data integrity, privacy, and security, encouraging individuals to disclose their health information freely. This solution gives patients complete control over who assesses their health information. The framework proposed access management to patients' health data for researchers and contact tracers. This solution classifies patient health information to different sensitivity levels and manages access based on this sensitivity. In case of unauthorized access, the proposed solution detects and prevents such access, thereby ensuring the patient's health information's security, integrity, and privacy.more » « less
-
The healthcare sector is constantly improving patient health record systems. However, these systems face a significant challenge when confronted with patient health record (PHR) data due to its sensitivity. In addition, patient’s data is stored and spread generally across various healthcare facilities and among providers. This arrangement of distributed data becomes problematic whenever patients want to access their health records and then share them with their care provider, which yields a lack of interoperability among various healthcare systems. Moreover, most patient health record systems adopt a centralized management structure and deploy PHRs to the cloud, which raises privacy concerns when sharing patient information over a network. Therefore, it is vital to design a framework that considers patient privacy and data security when sharing sensitive information with healthcare facilities and providers. This paper proposes a blockchain framework for secured patient health records sharing that allows patients to have full access and control over their health records. With this novel approach, our framework applies the Ethereum blockchain smart contracts, the Inter-Planetary File System (IPFS) as an off-chain storage system, and the NuCypher protocol, which functions as key management and blockchain-based proxy re-encryption to create a secured on-demand patient health records sharing system effectively. Results show that the proposed framework is more secure than other schemes, and the PHRs will not be accessible to unauthorized providers or users. In addition, all encrypted data will only be accessible to and readable by verified entities set by the patient.more » « less
-
null (Ed.)The increase in cyberattacks against the healthcare system, notably Electronic Health Records (EHRs) breaches, has cost the healthcare providers more in recent years. This situation is predicted to increase in the coming years as the healthcare systems are proposing a consortium EHRs repository. Due to this reason, it is crucial to deploy solutions that can ensure the security of shared health records. More specifically, maintaining the integrity and consistency of shared EHRs becomes pertinent. In this on-going research, we propose a blockchain-based solution that facilitates a scalable and secured inter-healthcare EHRs exchange. These healthcare systems maintain their records on individual private blockchain networks, and the blockchains interact to exchange patient health history based on request. The proposed solution verifies the integrity and consistency of requests and replies from other healthcare systems. It presents them in a standard format that can be easily understood by different healthcare nodes. The verification steps guard against malicious activities on both stored and in transit EHRs from insider and outsider threat actors. We evaluate the security analysis against frequently encounter outsider and insider threats within a healthcare system. The preliminary result shows that the architecture can detect and prevent threat actors from uploading compromising EHRs into the network and prevents unauthorized retrieval of patient's information.more » « less
-
null (Ed.)The transpacific testbed is a generic routing encapsulation (GRE) tunnel built between CUNY City College (CCNY), USA and Kyushu Institute of Technology (KYUTECH), Japan. The tunnel, built through internet2, originated from CCNY through the JGN network in Seattle and terminated at Kyutech in Japan. The testbed defines the future of the Internet by focusing on addressing research challenges associated with enabling trustworthy networks, supporting the Internet of Things (IoT), which encompasses everything connected to the Internet and cyber-physical systems (CPS) - a controlled mechanism monitored by computer-based algorithms. In this paper, we describe the setting up and testing of the testbed. Furthermore, we describe the real-time experiments conducted on the testbed and present the results. The experiments are classified into two: blockchain-based cooperative intrusion detection system (CoIDS) and Secure Virtual Machine introspection. In each of the experiments, we describe the method and present the results. Finally, we look into the ongoing works of extending the testbed to the COSMIC global testbed.more » « less
-
Systems for Internet of Things (IoT) have generated new requirements in all aspects of their development and deployment, including expanded Quality of Service (QoS) needs, enhanced resiliency of computing and connectivity, and the scalability to support massive numbers of end devices in a variety of applications. The research reported here concerns the development of a reliable and secure IoT/cyber physical system (CPS), providing network support for smart and connected communities, to be realized by means of distributed, secure, resilient Edge Cloud (EC) computing. This distributed EC system will be a network of geographically distributed EC nodes, brokering between end-devices and Backend Cloud (BC) servers. This paper focuses on three main aspects of the CPS: a) resource management in mobile cloud computing; b) information management in dynamic distributed databases; and c) biological-inspired intrusion detection system.more » « less
An official website of the United States government

Full Text Available